Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
نویسندگان
چکیده
منابع مشابه
Land Use Classification Using Optimum-Path Forest
It was introduced in this paper the Optimum-Path Forest for land use classification aiming a better environmental management, using images obtained from CBERS 2B CCD satellite covering the area of the Rio das Pedras watershed, Itatinga City, São Paulo State, Brazil. We also compared the Optimum-Path Forest algorithm with the well known supervised classifiers: Artificial Neural Networks using Mu...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملSupervised Pattern Classification Using Optimum-Path Forest
We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in ...
متن کاملSupervised pattern classification based on optimum-path forest
We present an approach for supervised classification, which interprets a training set as a complete graph, identifies prototypes in all classes, and computes an optimum-path forest rooted at them. The class of a sample in a tree is assumed to be the same of its root. A test sample is classified by identifying which tree would contain it. We show how to improve performance from the errors on an ...
متن کاملECG arrhythmia classification based on optimum-path forest
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the noninvasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e., cardiac rhythm abnormalities). Aiming to made a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2016
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2016.2541458